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Probabilistic Inference
and

Non-Monotonic Inference

1. Introduction.

(1) I have enough evidence to render the sentence S
probable.

(2) So, relative to what I know, it is rational of me
to believe S.

(3) Now that I have more evidence, S may no longer
be probable.

(4) So now, relative to what I know, it is not
rational of me to believe S.

This seems like a perfectly ordinary, common sense, pair of
situations. Generally and vaguely, I take them to embody what
I shall call probjhistki inference. This form of inference is
clearly non-monotonic. Very few people in Al seem to have
looked at it carefully.

There are exceptions: Jane Nutter (1987) thinks that
sometimes probability has something to do with non-monotonic
reasoning. Judea Pearl has recently (1987) been exploring the
possibility.

Of course there are any number of people whom one
might call probability enthusiasts. Cheeseman (1985), Henrion
(1987) and others think it useful to look at a distribution of
probabilities over a whole algebra of statements, to update that
distribution in the light of new evidence, and to use the latest
updated distribution of probability over the algebra as a basis for
planning and decision making. A slightly weaker form of this
approach is captured by Nilsson (1986), where one assumes
certain probabilities for certain statements, and infers the
probabilities, or constraints on the probabilities, of other
statements.

None of this corresponds to what I call probabilistic
inference. All of the inference that is taking place is strictly



d i. Deductive inference, particularly that concerned with
the distribution of classical probabilities or chances, is of great
importance. But as non-monotonists (?) have pointed out, this
is not to say that there is not also an important role for what
logicians have called "ampliative logic" or "inductive logic" or
"scientific inference" -- that is, logic in which the conclusion goes
b nd the premises, asserts more than do the premises. This is
what David Israel (1980) has called "real rules of Inference." It
is characteristic of any such logic or inference procedure that it
can go wrong: that statements accepted at one point may be
rejected at a later point.

2. McCarthy and Hayes.
As a matter of historical conjecture, I would suggest that

it is the enormously influential article by John McCarthy and Pat
Hayes (1969) that slowed the exploration of probabilistic
inference. They offer powerful arguments against the use of
probability as an approach to non-monotonicity. Since much of
this argument applies equally well to most formalizations of
non-monotonic inference, it is worth rehearsing their objections.

They commence with a first order predicate calculus, and
add 3 operators: Consistent(O), Normally(O), Probably(O). We
consider a set a of sentences, and add new sentences to it
according to the rules:

1. Any consequence of a may be added
2. If 0 is consistent with a, consistent(O) may be added.
3. Normally (0), Consistent (O)F Probably (0)
4. 0 F Probably(O) is a possible deduction
5. If 0 1,... ,On 1- 0 is a possible deduction, then

Probably(01),..., Probably(On) F Probably(O) is a possible

deduction.
Two objections are offered against the use of probabilities:

"It is not clear how to attach probabilities to statements
containing quantifiers in a way that corresponds to the amount
of conviction people have." (p. 490)

"The information necessary to assign numerical
probabilities is not ordinarily available.... Therefore ...
epistemologically inadequate." (p.490)
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A propos of these objections we only remark that (1964), and
Krauss (1966), and others have provided schemes for assigning
probabilities to quantified statements; and it is not obvious what
information is necessary to assign numerical probabilities, so it's
not obvious that we don't have it.

More telling is the example that McCarthy and Hayes
offer: P looks up Q's number;

So he knows it;
So he should believe that if he dials it, "he will come into

conversation with Q."
In order to obtain this conclusion in terms of probability, we
need to add to the rules:

6. Probably(O) F 0
We also need a rule for deleting statements from a. But the
details of these rules are not to the point. It is rather the
intuitions that lie behind them (if not the axioms themselves)
that have guided work in non-monotonic inference.

Rules (1) and (5) constitute the main stumbling blocks in
the way of developing a system to embody these intuitions, even
without (6). In particular, rule (1) requires that a be strictly
consistent; we shall argue later that this is neither necessary nor
desirable.

From (1), (3), (4) and (5) and natural assumptions we
get a lottery paradox (Kyburg 1961). (With (6) it becomes a
contradiction. )

Assume: 0i : ticket i loses; 0: all tickets lose; a contains

"-0"; Normally (0i); Consistent (0i);

By (3), Probably(Of). By (1) {Oi} F 0. Therefore by (5),

Probably(O). But by (4), Probably(-O). If this isn't
contradictory enough, add (6). Note that nothing self-referential
is involved.

3. Non-monotonic Inference.
In this section we will show that three well-known

examples of efforts to codify non-monotonic inference stumble
equally over the lottery paradox. Before doing so, it will be well
to consider the question of what we want of this set a of

3



"believed" statements to do for us. Statements on that list
should serve as evidence for other statement. They should be
useful as premises in planning (the agent P is constructing a
reasonable plan for talking to Q). They should define the limits
(at a given point in the collection of evidence) of reasonable or
serious possibility. It is the planning and designing function of a
that is of clearest importance in Al. Don Perlis (1980) has come
up with the term "use-beliefs" to describe this set of sentences.
Perlis has also argued (Perlis 1980) that standard systems of
non-monotonic reasoning have difficulty in handling iterations of
application. His zookeeper example -- one of the birds is sick
and can't fly -- is just the lottery paradox made realistic. But
Perlis still seems to want a to be consistent.

Let us look at the system of Reiter (1980), not because it
is the latest thing in default systems, but because it embodies the
intuitions driving default logic particularly clearly.

The intuitive idea is to adopt a set of defaults D inducing
an extension E of some underlying incomplete set of wffs W. The
extension E need not be unique, but (1), (2) and (3) should be
satisfied:

(1) W C E,
(2) E is deductively closed, and
(3) Suppose (A:MB 1,...MBn/C) is a default, and each

of Bi is consistent with E. Then C belongs to E.

The lottery with n tickets: W = {sentences describing a
fair lottery}; a perfectly natural default is :M-Oi/Oi - if you

don't know that ticket i wins, i.e., if it is possible that it loses,
it's reasonable to believe it loses.

This gives you n extensions Ei, each of which specifies one

winner and n-i losers. That seerns implausible; it is clearly not
useful for planning to have a number of extensions. Note that it
is deductive closure that prevents our having a single extension
containing each Oi.

How does circumscription handle the lottery tickets?
Roughly speaking: If x is a ticket, and x is not abnormal, then x
loses the lottery. (Of course if you don't know how many tickets
there are in the lottery, it might be the case that
circumscription would lead you to conclude that there was only
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one, and that therefore you would win!) It is hard to know
exactly what one can conclude, since (McCarthy 1980) we
"clearly" have to include domain dependent heuristics for deciding
what circumscriptions to make and when to take them back. But
waiving difficulties of quantification, it certainly seems right that
in the case of just one ticket, we should be able to conclude that
it does not win the lottery.

The question then is, "How often can we iterate this
argument?" It would seem that the answer is roughly n/2: If we
have considered less than half the tickets, the next ticket is still
(statistically) likely to lose, relative to what we have taken
ourselves to know.

The non-monotonic logic of McDermott and Doyle (1980)
construes the set of non-monotonic theorems as (roughly) the
smallest fixed point under non-monotonic derivability. So it
would seem that in lottery cases there would be no useful set of
non-monotonic conclusions. And yet the lottery should not be
dismissed as frivolous: consider the lottery as standing for any
situation in which a certain outcome is taken to be "incredible",
and consider an arbitrarily long sequence of such situations. We
shall consider a specific case shortly.

4. The Cannonical Examples.
Before considering the seriousness of the inability of

standard non-monotonic inference systems to deal with the
lottery, let us show that probabilities do work reasonably well on
the standard examples of non-monotonic argument.

We assume that probabilities depend on our knowledge of
frequencies or chances, and further than they depend on what
we know about the object at issue.

Let E be evidence, K be the set of acceptable beliefs.
(1) Tweety.

We know "almost all birds fly" in E.
We know "all penguins are birds" in E.
We know "no penguins fly" in E.

Suppose we add to E "Tweety is a bird." The probability
that Tweety flies is high. High enough for us to accept "Tweety
flies" in our body of knowledge (or use-beliefs) K.

Suppose we now add: "Tweety is a penguin" to E. The
probability that Tweety flies, relative to E is now 0. We must
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delete "Tweety flies." And add "Tweety doesn't fly."
What we are doing here is using the more specific

reference class as the basis for our probability. This principle is
also given by McCarthy (1986), Etherington (1987) (as 'inferential
distance'), Poole (1985) ("strictly more specific), and others.

(2) Nixon Diamond:
Add "Nixon is a Quaker" to the standard E. It is then

probable relative to E that Nixon is a pacifist; we add "Nixon is a
Pacifist" to K -- "we plan on it."

Now add "Nixon is a Republican" to the standard E.
Similar: we add "Nixon is not a pacifist" to K.

Now add both. Knowledge about republicans and
knowledge about quakers now conflict as a basis for asserting (or
not) that Nixon is a pacifist. And we just don't know about the
intersection. So we can't conclude anything. This conforms to
the usual non-monotonic treatment. McCarthy (1986, p. 90)
seems to give us a little more: we can conclude that Nixon is
either an abnormal quaker or an abnormal republican. But the
cash value of that is just that we don't know whether or not he
is a pacifist.
(3) Cohabitation: (Reiter 1980)

Spouse (x, y) &hometown (y) =z: M Hometown(x) = z /
hometown (x) = z

Employer (x, y) &Location (y) =z: M hometown(x) = z /
hometown(x) = z

Consider John, whose spouse lives in Toronto and whose
employer is located in Vancouver. We can derive an extension in
which his hometown is Toronto, and one in which his hometown
is in Vancouver.

Probability lets us conclude the disjunction: John's
hometown is either Toronto or Vancouver. This may be false, of
course, but that is the nature of probabilistic inference. The
example suggests to Reiter: (1) ordering defaults (on what basis?)
and (2) getting more information (a copout if we have to use
what we evidence we have; otherwise, available to probability.

Reiter (1980) also suggests that default logic is useful for
dealing with the frame problem. We use a default that says
everything stays same unless it is deducible that it has changed.
Probability does even better here: When we add a new statement
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to E, it will not change most of the probabilities from which K is
derived. So without a default: everything in K stays there
unless it's probability has changed.

This brings up the most serious charge against probable
)LL- 1.-PLIu UL U IUL YU

evidence E, any addition to E requires the recomputation of all
the probabilities on which K is based. But non-monotonic
approaches require the same thing: "networks must be
reconditioned after each update" (Touretzky (1986); Etherington
(1987).) How expensive that reconditioning is depends on how
difficult it is to compute probabilities.

5. Consistency.

How can K (the a of McCarthy and Hayes) serve as a
standard of serious possibility, as a basis for planning or
designing, if it is inconsistent? Clearly, if it is deductively closed,
it cannot. But it membership in K is determined by high
probability it won't be deductively closed. On the natural
assumption that statements known to have the same truth value
will have the same probability, it will contain (in principle) the
logical consequences of statements that it contains. (Since if P
entails Q, P = P&Q will be logically true and thus part of the
evidence E; and the probability of Q must be at least as great as
that of P&Q.)

Inconsistency is a good reason for avoiding deductive
closure. But what is a good reason for having an inconsistent K?
The lottery is frivolous. Is there a practical and natural
counterpart? The answer is yes, and it comes from the
eminently respectable scientific domain of measurement. Suppose
my job is measuring items produced by a certain machine.
They are either OK or they aren't. It is clear that however
sophisticated my measurements, it cannot be demanded that
they be error free. Furthermore, there is no way of bounding
measurement error. What =n be demanded is that of each
measurement, the probability that it leads to a false assessment
of OK be less than (say) .001. (Pick your own number if you
don't like that one. But not 0.0.) For purposes of further
manufacture, for purposes of design, for purposes of planning, it
is obvious that I must believe, of each inspected piece, that it is
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OK.
It is also clear that I ought also to believe -- accept as a

serious possibility, accept for planning or design -- that of a
large number (106?) items, at least one will not be OK. Thus
my beliefs -- my use-beliefs -- are flatly inconsistent. The
deductive closure of K contains all the statements in the
language. Yet I have no difficulty using this (unclosed!) set of
statements K for planning, or as a standard of serious possibility.
(Even though the coninction of statements in K is impossible, it
serves as a standard of serious possibility in the sense that if a
statement contradicts a member of K, it is not to be regarded as
a serious possibility. That one of the pieces that has passed my
inspection is not OK is not a serious possibility, though of course
it is a possibility. And it is not a serious possibilty that all the
inspected pieces are OK.)

The probabilistic version of non-monotonic inference faces
one irrefutable complaint. Real probability enthusiasts will ;ay
that the story I have just told, while reflecting the way in
which people do talk, should be regarded simply as a rough
approximation to the real truth which can only be represented
by a probability distribution over all the states of the world (or
all the sentences of the language). In particular, in planning to
use one of the manufactured items for a certain purpose, what I
must "really" be doing is evaluating the probability that it is OK,
given that it has passed my inspection, multiplying that by the
utility of using a piece that really is OK, and adding to that the
negative expectation, similarly computed, of using a piece that is
not OK. If the probability of a false acceptance were .25, and
the number of pieces involved were 10, clearly the probabilistic
analysis would be preferable. Why not when the probabilities are
smaller and the numbers bigger?

To this one can reply by waving one's hands at the
computations involved: acceptance into the body of beliefs K is
not only realistic (as a representation of what humans do) but is
the only computationally feasible way to go about these things.
But that answer is not clearly correct. Here it seems to me that
we will only be able to get good answers about which is the best
way to represent practical knowledge or use-beliefs by
constructing systems that embody each approach.
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6. Conclusions.
We have not provided an algorithm for performing

probabilistic inference, though some efforts have been made along
these lines (Loui 1986). We have not argued that pure
probabilism is unworkable in principle. We have argued that
many of the usual arguments against probabilistic inference are
equally applicable to other forms of non-monotonic reasoning.
We have argued that, in fact, once the single hurdle of
"inconsistency" is overcome, probabilistic inference offers
advantages (in some contexts) or at least no disadvantages (in
most contexts) compared to non-monotonic reasoning. We have
argued that, in fact, the ability to live comfortably with certain
sorts of inconsistency is an important feature of probabilistic
inference, and that it allows us to take as a basis for planning
exactly those uncertainties that are collectively impossible to
credit.

All this is not to say that the various forms of
non-monotonic reasoning that have been explored are not useful
for special purposes. It does suggest both that specific instances
of non-monotonic argument can be justified by reference to
probabilities, and that any sort of inference that was
incompatible with probabilistic inference would have some strikes
against it.
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